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ABSTRACT 

The raaxiuiuTn strength analysis of initially iTnperfect, axially co-npressed, 

(jrthotropic, sandwich and eccentrically stiffened,circular cylindrical shells 

has beer developed through the use of Reissner's variational principle, 

von Karman-Donne 11 kinematics, and a deformation theory of plasticity. 

For a given material and for the special cases of isotroplc sandwich 

cylinders and conventional cylinders with eccentrically located longi- 

tudinal stiffeners, the results of the analysis reflect significant 

reductions in load-carrying capability in the range of "effective" 

radlus-to-thlckness ratios of practical interest. 

111 
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FOREWORD 

The work reported herein constitutes a portion of c continuing effort 

being undertaken at Stanford University for the U. S. Army Aviation 

Materiel Laboratories under Contract DAAJ02-68-C-0035 (Task 1F162204A17002) 

to establish accurate theoretical prediction capability for the static and 

dynamic behavior of aircraft structural components utilizing both con- 

ventional and unconventional materials. Predecessor contracts supported 

investigations vhicl led, in part, to the results presented in references 

4, 15, 16, 17, 19, «id 21. 
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INTRODUCTION 

The challenge of designing lightweight structures with high strength and 

stiffness for aerospace applications has not yet been met even though 

significant advances have been made in vehicle capability. One of the 

fundamental problems precluding true structural optimization is that the 

most common structural element for resisting compression loadings, the 

thin shell, can be analyzed for design purposes only on a semi-empirical 

basis. The history of the 40-year-old enigmatic thin-shell instability 
1 2 

problem through 1967 is given in several recent survey papers by Hoff ' 
3 

and Stein . The basic reasons established for the discrepancy between 

prediction and actual performance of thin shells in compression are the 

effects of prebuckling deformations, initial imperfections in shell 

geometry, and boundary conditions.  Interestingly, except for noting 

the theoretical limitations of the linear-elastic theories surveyed, 

neither author discusses nor assesses the quantitative effects of Inelastic 

deformations on the maximum strength (initial buckling load) of cylindrical 

shells in axial compression. The extreme importance of inelastic deform- 

ations in determining the maximum strength of such shells has been brought 
4 

out recently by Mayers and Wesenberg ,  They determined that, in the 

range of shell radius-to-thickness ratios of practical interest, signi- 

ficant maximum-strength reductions are obtained relative to predictions 

based upon any theory restricted to linear-elastic material behavior. 

Since thin shells for resisting compression loads appear in aerospace 

structures in either stiffened or sandwich rather than pure monocoque 

form, the "effective" radius-to-thickness ratios are in the range 50-250. 

The low ratio is mentioned specifically by Hoff .  For the range 50-250, 

it is apparent that the effects of initial imperfections, the main 

contributor to theory-experiment discrepancies in thin, unstiffened 

shells (radius-to-thickness ratios > 250), must be minimized and the 

effects of inelastic deformations maximized in establishing maximum 

strength.  This maximum-strength problem, with inelastic deformations 

considered, is not to be confused with the plastic buckling of 

shells treated, for example, by Lee and Batterman .  Such shells are 



prone to be inefficient compared with shells which, if devoid of initial 

imperfections, would buckle at the classical bidding level of the 
7      8 

linear theory arrived at independently by Tincshenko • Lorenz , and 
9 

Southwell about 60 yea«.« ago. 

Now, in view of the results of reported compression tests on large-scale 

sandwich and stiffened shells (references 10, II, 12) in the radius-to- 

thlckness-ratio range 45-220, maximum calculated stresses Indicate the 

presence of Inelastic deformations at maximum load. Therefore, in view 
4 

of the main conclusion of Mayers and Wesenberg and experimental evidence, 

the present study has been undertaken to determine the Influence of 

inelastic deformations on the maximum load of Initially imperfect, axially 

compressed, circular cylindrical shells of stiffened and sandwich con- 

struction. For the latter, considerations of the face-dimpling and 

face-wrinkling modes of instability have not been considered. 

The present study follows the approach used in reference 4 and differs 

from it only in the provision of appropriate mechanisms for describing 

orthotropic sandwich and stiffened shells (ircludlng eccentricity effects). 

That is, the investigation uses a modified from of Reissner's variatlonal 

principle  in conjunction with von Karman-Donne11 shell theory and a 

deformation theory of plasticity. Reissner's variatlonal principle not 

only permits the selection of the stresses independent of the displace- 

mencs, but also facilitates the incorporation of inelastic effects into the 

analysis. Confidence in the inelastic analysis based on Reissner's 

principle has been established in reference 4 by comparing a special 
14 

case of a purely elastic solution with that obtained by Kempner  through 

use of the minimum t'L«! potential energy principle. Similar procedures 

were follcwed by Mayers et al.  '  with respect to both plates and 

circular cylindrical shells. With confidence previously established, 

maximum-strength, load-shortening curves have been obtained for sandwich 

shells (Isotropie cores) and axially stiffened shells (eccentricity 

effects Included) of several different materials.  Because of the 

significant material dependence of these curves, it is reasonable 

to conclude that inelastic deformations must be included in determining 
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GENERAL THEORY 

STATEMENT OF PROBLEM AND BASIC ASSUMPTIONS 

The general problem studied Is the maximum strength of orthotroplc 

sandwich and stiffened (eccentricity effects Included) circular cylindri- 

cal shells In axial compression. The solutions are obtained through the 

use of a modified version of the Reissner principle, the von Karman- 

Donnell strain-displacement relations, and a deformation theory of 

plasticity. Since no unloading in the nonlinear, inelastic range occurred 

in the monocoque shell analysis of reference 4, it is assumed that the 

terms nonlinear elastic and Inelastic can be used Interchangeably. For 

the sandwich shells, no provision is Incorporated to allow for the face- 

wrinkling and face-dimpling modes of instability. 

The model used to describe stiffened and sandwich cylindrical shells is 

shown in Figure 1 and comprises a two-element ctot ,  section and core of 

finite transverse shear sfclffness in both the xr- and yz-planes, 

respectively. The effectiveness of this model was demonstrated by 

Mayers and Chu  in their maximun-load predictions for sandwich plates. 

The two-element section with the core rigid in ahear has been employed 
4 15-19 

by Mayers et al. *     in their extensive luaximum-strength studies of 

plates and cylindrical shells to avoid the complexity, due to Inelastic 

effects, of integrating a nonlinear stress distribution through the 

thickness. 

The strain-displacement equations used in the present analysis are those 

of von Karman-Donnell for shallow, initially imperfect, circular cylin- 

drical shells. Since the magnitudes of both deflections and rotations 
4 

are small as determined by Mayers and Wesenberg , the use of the von 

Karman-Donnell strain-displacement equations is justified. 

BASIC EQUATIONS 

The von Karman-Donnell strain-displacement relations,modi^iei to include 

the effects of initial imperfections, are well known (for example, see 

reference 4); they are given here as 



1  2 e = u. + ^ w,  + w, w 
x    x  2  x    x o,x 

12 w 
e' = v, + -r w,  + w, w   - — 
y    y  2  'y    'y o.y  R (1) 

y1 = u, + v, + w, w, + w  w, + w  w, 
xy    y    x    x y   o,x y   o,y x 

The curvature-displacement equations have been modified to include the 

effects of transverse shear (for example, see reference 17) and are given 

by 
*        K  = -W,   + > 

"X     XX   xz,x 

(C = -w,  + 7 ,-v 
y   yy  yz.y (2) 

K  = -w,  + x 7    + T >' ^xy    xy  2 xz,y  2 yz,x 

The total strains ary then 

e = e + z * 
X    X      X 

e = c' + z ^ (3) 
y  y   y lv 

= > ' + 2z K xy   xy      xy 

VARIATIONAL PRINCIPLE 

Because of its proven success in determining the maximum strength of plates 

and shells (see references 4, 15, and 17), the Reissner principle is 

selected for application in Lhie problem.  For prescribed surface displace- 

irents (controlled end shortening), the Reissner functional is simply 

U" = /// [3 e + ^ 6  + '  "■   + T  /   + T  •   - F'" JV        ^4) JJJ  ■ x6x   y y   xy xy   yz'zy   xz xz  r - uv       (*) 
V 

where F' is thi stress energy density. F'  is a function of the 

stresses such that the strains are related to the stresses by the rela- 

tionships 
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xy 

5LL 
xy 

v .EL 
y« 
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The function«! given by equeticr (4) is utilized in the indirect vsrla- 

tional «pproech to develop Euler equation boundary conditions for both 

orthotropic sandwich end stiffened cylindrical shells in Appendixes I 

and II, respectively. For problems involving linear-elastic material 

behavior, F* become» the complementary energy density. As shown in 

references 4, 15, and 16 for a nonlinear elastic material, F' is given 

by 
'eff 

dc 
iff        eff 

(6) 

The relationship between    € 
,20 eff 

and 
eff 

is given by the Ramberg- 

Osgood  three-parameter representation of a uniaxial stress-strain curve 

in the form 

aeff J  /0eff\N 
(7) 

where K and N are material constants and depend on a given material 

Upon substitution of Aquations (6) and (7) into equation (4) and sub- 

sequent integration, the Reissner functional becomes „ 

"" -fff^ + 
y y   xy xy   xz xz   yz yz 

eff  KE_ 
2E   N+l 

dV 

(8) 
Consideration of purely elastic core behavior, and integration over the 

cross section results in the expression 
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(9) 



where w ■ x/L, t • y/2rtRfand V ««t-LR, The primed end double-primed 

quantities refer to the midsurfeee and bending contribuciona, reapec- 

tively. The subacripts t and b refer to the top and bottom faces, 

respectively, of the model cross section. 



METHOD OF SOLUTION 

ISOTROPIC SANPWICH.CIRCULAR CYLIKDRICAL SHELLS 

Although the general theory hau been established for sandwich shells with 

orthotroplc cores, the application  is made herein to the special case 

of an Isotropie core. Thus, the following simplifications can be made'. 

r.    ».    ^    x^;     'vz 
G  ■ G  « G a   = ""*— xz   yz   c v * ' xz      yz 

(10) 
E 

xy  2(l+v) 

It can be verified also that 

/;' v2  /er" ^    /c 

.2v(!L)(!|] .^(^l 
+ 2(..«.)(-?M + i-2-[   + (j-f 

Substitution of equations (10) and (11) into equation (9) with Poisson's 

ratio taken as 0.5 (incompressible material assumption Justified a 

posteriori in RESULTS AND DISCUSSION) leads to the result 

i'// 
1 1 .ai        3*        T. j. 

| E x     E  y     E  'xy    E  x 
00 

/T" T"                  G t gV  .„ ,  V_ ,,  x     1   c c  , 2   j   2, 
+  E  > E  'xy + 4 ItT" (7xZ 

+ 7yz) 

-m*m -m^-m 
m ^ -©ffl-^i 



■\6k KW* W1 d-d. (12) 

Displacement. Stress, and Shear Strain Fommlations 

The displacenients from the initial shape are selected to be 

— cos -^ + hC5oo + 5ii cos r cos r + ^20 
XV 

2f.x 
cos — + § 

X 

2ry 
02cos -r 

u = -ex 

v * 0 

(13) 

(14) 

{15/ 

where e is the prescribed unit end shortening. These displacements 

are the same functions as those used in reference 4 with the radial 
14 

displacement identical to that of Kempner  . The rationale underlying 

the use of expressions for u and v involving no free parameters has 

been demonstrated and clearly justified in references 4 and 13. 

This significant simplification of the expressions for the midsurface 

displacements permits the inplane equilibrium equations in the x- and 

y-directions to be satisfied independently of the magnitudes of the 

free stress coefficients. 

21 22 
From Che findings of Mayers and Wrenn  and Tennyson a 1 Welles  , as 

pointed out in reference 4, an initial radial imperfection shape to 

which a cylindrical shell is particularly sensitive is 

Wo = hU11  cos ^- cos ^+ 520  COS 
1   O      X      V       o 

2r.x  1 
T! 

x 
(16) 

The midsurface stresses can be expressed in the form 

"x 
E 

a       .               r.x ~y       , 2r:y            2iry 
— + A, -   cos — cos ■— + 4A0_ cos —— cos ~-— 
E        11          V \            22 \              \ 

x v x               y 

+ 9A 
13 

cos 'r&-  cos 20- + A31 cos 3lU£. cos ^- + 4A02 cos ^ 

y        x   ' y        ' y 
(17) 

E 
^x ^v 2 "x 2tv 

A      sin ^— sin ^ + 4A 7   sin -r— sin -—*- 
' x ' y '"' ' x ' y 



+ ^13 -ln 1? ^ ^ + ^31 *ln ^ ,ln ^1 (18) 

a' 
-f - - u2 k! co. » co. ^ + U^2 cos 2? con ^f 

y 

+ Ä13 cos ^ co. Jf + ^3l COS ^ CO. ^ + ^ «. ^»] 

(19) 
j'        a' T" 

The equivalence of the coefficients in   ~ ,    -* ,    and   -p*    is 

established frog direct satisfaction of the inplane equilibrium equations 

in view of the fact that the    u    and    v displacements involve no free 

paraaet    s. 

The bending stresses are written as 

"E " all COS ^ C08 ^ + a20 COS ^ + a02 COS ^ (20) 

a"   2 

E  * 
b  cos ^ cos V + b  cos ^ + b  cos -^ 
**     x    y x   w*     y 

(21) 

dll 8in V sln T? (22) 
x    y 

The form of the shear strains in the xz- and yz-planes are taken to be 

compatible with wt  and w,  respectively. Both expressions are then x        y 
written in the form 

Jtx    «y. 2«x F   sin T— cos -r2- + T   sin 
xll    \ \       x20    '\ 

7  -T   cos^-sin^+T   sin ^2 
y*    yn     \     Ky    yoi      S 

(23) 

(24) 

Elastic Problem 

The von Karman-Donnell strain-displacement relations, modified to include 

initial radial deformations and transverse shear effects (see Appendix I), 

are substituted into equation (12) to give 
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0 0 

Hie; 
i    2. U,    + X w,     + w, w *%     2      x        'x o,x 

ff' 
L l      

2 
v,    +-rii, 

y      2     'y 

+ w, w        - ^ 
'y o,y      R E 

V,    + u,    + w, w,    + w, w 'x        *y        'x 'y        'x o.y 

y o,x yy     y*.y 
+   E    2 [   'xx " 7X2,xj ^   E    2 [W' 

1      E        |     xy      2  V'xz.y T V,x/j      *    Et£ V" V'/ 

(25) 

In consideration of linear-elastic behavior, the bending stresses can be 

related to the curvatures through Hooka's law, thus modifying the Reissner 

functioi ai of equation (12). This procedure is followed successfully 

and Justified in references 4, 15, 16, and 17. After setting K « 0 

(linear elastic material), equation (25) is rewritten as 

i-z/FiM-- +   w, w 
x 'x o,x 

0  0 

+ w, w        - — 
y o,y     R 

+ -| 
L 1      2 

v,    + •r we y      2     ey 

V,    + u,    + w, w,    + w      w, x y x 'y        o,x 'y 

+ w      w, 
o,y 'x E    2 

a" 
w,      - y +     „    |w,       - y 

KX        xz,x El     yy        yz -1 
^Muf l / ^ \lJ

1Gt       /2       12\ + -r4- hw,       -Tt/ +7 I       +TCC     17        +7    1 
E        [     xy     2 ^xz^      'yz.x/J 4 77"    \ xz yz/ 

11 



UiM? - (i) (i) -(if| 

(W'« - 7«,x) (W'yy " 'yz.y) * ('*'xy  " ^ >X2>y - | ryifX) ]j 
2, 

(26) 
This «oJified fora of the Reissner functional leaves only the displace- 

aents and sidsurface stresses to be determined by the variational 

procedure. The all-elastic, load-shortening curves are established 

by seeking a stationary value of the Reissner functional in equation (26) 

with respect to the free parameters 5. , A..,rx , Ty    , and o/E (see 
J   J  ij   ij 

Appendix 111). The resulting set of equations is reducible to four 

equations in the four ■.x&sowns o/E, |.., f2 , and g . These equations are 

then used to construct the elastic. Imperfection- ana shear parameter- 

dependent, load-shortening curves shown in Figure 2 for representative 

values of the buckle wave parameters u, T|, and 6  and the core 

transverse shear stiffness parameter f. 

Inelastic Problem 

Equation (25), consisting of 17 free parameters, can now be utilized for 

the inelastic problem. The additional parameters over the four required 

for the elastic solution appear because the bending stresses require 

seven additional parameters. Neither these seven additional free 

coefficients a.., a»., a _, b.., b_ , b.», and d . nor the six mid- 

surface stress components A,., A»«. ^13» ^31» ^20' an(* ^02 Can ^ 

eliminated in terms of the |-., ^n' ^02» and a^E because of 

the highly nonlinear Inelastic contribution to the Reissner functional. 

As a result, the extrema of equation (25) are found with respect to the 

17 unknowns by analytic minimization of the Reissner functional 

and subsequent numerical solution of the resulting nonlinear algebraic 

equations. A (R/h) - dependent, load-shortening curve is obtained 

and presented in Figure 3 for a 2024-13 aluminum sandwich cylinder 
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with an Isotropie core. The uniaxial stress-strain curve of the face 

sheet material is shown in Figure 4. 

ORTHOTROPICALLY STIFFENED CIRCULAR CYLINDRICAL S.TELLS 

A stiffened, circular cylindrical shell is represented by a two-element 

model with a core that is infinitely rigid in shear (see Figure 1). The 

model is allowed the freedom of variable inplane and bending stiffnesses 

to account for the orthotropic effects of stringers ant1 rings in the 

longitudinal and circumferential directions, respectively. The general 

Reissner functional, represented by equation (8), with transverse shear 

effects neglected is then integrated over the thickness of the model to 

obtain 

EV    JJ E ex 

a' T' 

E > ' E 'xy    E x   E y   E 'xy 
0 0 

uw^i-Äi^rwr -Lüde 

(?7) 

The effective stress ir both top and bottom faces, modified to include 

variable stiffnesses in the x- and y-directions, respectively, is 

written in the form 

eff t.b 

r.T » 

X 
a"    I fJ' -I -rtf 

X   ± X 

cr" 

>P 
+ 3 J£L 

M  xy xy ^Ty 
(28) 

where 

s' = -^— Sx  2tfE 

(29) 

2t 
^ 
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X 
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2tfE 

s" - 
X 

i 

s" - 
y 

l 

•tt _ 
0 D 
x y s    m 

v D   + v D 
x y        y x 

ft      «■ 3 m 
«y V          V 

2(l+-| + -*) 

(29) 

For an Isotropie, two-element model, equations (29) reduce to 

8i • 8» „ s" . s" - 1 
X 

S* - 8" 

j     x    y 

i 
2v (30) 

xy   xy  2(l+v) 

2 
and    <J cc t  in turn, becomes 

eft 

ffeff       "  K ± a'f + (ay ±ay)2  -  K ± ^ (ay * 9 + 3(Txy * Txy)2 
t,b ' 

(31) 
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Hence, the »bovs extrre«slon is new Identical to that used in references 

4, 15, 16, 18, and 19 for Isotropie plates and shells. Now, substitu- 

tion cf equation (28) into equation (27) leads to the following result 

applicable to orthotropic two-element media undergoing nonlinear-elastic 

defomations: 

U"  /*H( cr'    a' T' 

0 0 ' 

cr"    a"    T"       , r , /o^2     .  /o'v2 

+ E ex+ E ey+ E 7xy    l\*^   \  Y.)     +      s^      \  Ef 

N+l 

+ (^ jj^c (32) 

Correlation of Stiffness Parameters 

In reference 4, the thickness t of the homogeneous, isotropic, circular 

cylindrical shell is related to the distance h separating the two 

faces of the two-element model by equating the classical buckling stress 

of the homogeneous, isotropic cylinder to that of the two-element cylin- 

der. For the orthotropically stiffened shell« a similar procedure is 

followed whereby the classical buckling stresses of the stiffened shell 

(see reference 23) and orthotropic, two-element model are equated to 

establish expressions relating the bending and midsurface stiffnesses of 

the stiffened shell to those of the orthotropic, two-element model 

(see Appendix IV). The resulting relationships correlating the stiffness 

parameters are derived in Appendix IV, first on the basis of zero stiff- 

ener eccentricity effects and then with eccentricity effects included. 

For the former case,the correspondence of stiffness parameters is 
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V2t
f    .JL 

l-v v - x y t 

E I s s 
dD 

D   /2tr -I L   .-!_ 
t l-V   V 

X   V 

D    /2t 
«y    f 

1 + 
E 1 

r r 
£0 

n    f        v        v 

M 
E I s s  . V    —^r- + V y    dD x 

,    /G J        G J \ 

2   \   dD fD / 

m 
E k. x 1 

Ttf      k4     -x 

(33) 

k, y 
(34) 

Gxy 
s1 

*7 S^yV^        3 

For an Isotropie,  two-element model,  the bending and twisting stiffnesses 

are related to the distance    h    separating the two faces and written in 

the form 

D    » x 
Etfh 

2 

D    = 
y 

2 
Etfh 

2 

Etfh2 

xy 2(l+v) 

(35) 

On the other hand, for an orthotropic, two-element model, the bending 
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stiffnesses must be related to h  and h , the distances separating the 

faces normal to the x-  and y-axes, respectively, and h , a fictitious 

weighted average of h  and h . These- h's are then related to the 

bending and twisting stiffnesses by 

D 
X 

Et^2 

2 

D 
y 

Et^2 

2 

EtJi    2 

(36) 

xy 

{^k + l) 
Substitution of equation (36) into equation (33) leads finally to the 

set of relations 

(f)2-i&)(t): 

i + 

i + 

E I 
s s 
dD 

r r 
iD 

1 (   s s     t r | 
" 2  Vy dD + x jö) l\ 

I - 

(37) 

v   , /G J   G J \ 

2  2 \ dD    £D / 

Equations (37) are reducible to those of the Isotropie, two-element model 

used in reference 4 by introducing the simplifications 

h = h = h  = h 
x   y   xy 

t = t 



and by eltminatlng all quantities subscripted with either s or r. 
2 

The resulting expression Is simply (h/t) ■ 1/3, which Is Identical to 

the expression derived, for example, in reference 4. 

The first-order effects of stlffener eccentricity are established in 

the detailed development given in Appendix IV. The fundamental bending 

stiffnesses appearing in equations (33) and (83) are modified approx- 

imately to give 

D /2t- 
x  f 
1-V V 

x y 

Et" 

12t(l-v ) 
1 + 

E I 
s s 
dD 

St E (t) 
l+(l-v )S (i) 

V2tf 
1-v v 

x y 

D /2t = 
xy  f 

Et' 

].2t(l"V ) 

Ef 

12t(l~v ) 

1 + 
E I 
r r 

l-v2)K  V ^ l+d-v") 

V    V 

i   2   2 

i / E l E I \ 

2 \ > dD    x jQ) / 

v r CSt2E 

, /G J   G J \ 
1 I    s s   ,     r r\ 
2 V dD    XD / 

l+(l-v )S 

(38) 

+ -f Ll+ 

AilJ/!r\ 
(1-V2)R ^ R/ 

C(1-V2)R St2E (t) 
+2(1-v)(R+S)+2RS(l-v )(1+v) 

ft 4) 

where z  and z  are the distances from the shell median surface to 
s      r 

the centroids of the axial and circumferential stiffeners, respectively, 

and C is a nondimensional ec.:ßntricity constant. 

Substitution of equations (36) into equations (38) yields 
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!¥-M^)(t)>-£|-'SS(tm! 

/h   f      1  /1+-?+ -? \    /^ \3   r v        v        i    /G J GJ\ 

(R+S) + 2R S(l-i   )(l+v)    v    R /J (^i^i) L 2+2(l+v)(R+S) 

Displacement and Stress Formulations 

Equations (13) through (22) are used to represent the displai-enent and 

stress distributions; they are of the same form as those selected by 
14 

Kempner . However, the nondimensionalizing factor h in equations (13) 

and (16) has been replaced with the effective thickness, t, of the 

stiffened circular cylinder. These two equations are then rewritten as 

» - ' %0 
+ hi  "S f, "8 % + ho ™ % + 802 "5 ^ 

-  /. K« fly  ,   .        „ä„ 2nxs w_ - t  (I,,  cos ^- cos -^ + ion    cos -Y-) sll '20 

(40) 

(41) 

Elastic Problem 

The von Krfrm/n-Donnell, strain-displacement relations presented in 

Appendix II for the initially imperfect, orthotropic, two-eletaent model 

are substituted in equation (32) to give 

1-1.a« 
IT   /Y rx 
w JJ \ * 

0  0 

u,x + f w,2+w,xw0jX 

a' 
v.v + ? w.y + W'yWo,y •y ' 2 
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w   + w, w 
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1 
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. .2 

xy ■ t        b J    (42) 
For linear-elÄStic material behavior, K is set equal to zero, and the 

procedure of relating the bending stresses to  the curvatures through 

Hooke's law can be used again, as in the case of the Isotropie sandwich 

cylinder. Equation (42) is then rewritten in the form 

J1rii 
r^ * I 1 \—z      u, + -r w, + w, w 
EV J J     | E |  x  2 'x   'x o,) 

0 0 

cr' 
+ -2 E 

L i 2 w V, + X w, + w, w   - - 
y  2  y    y o,y  R 

-~*. jv,  +u,  +w,w,  +w,w   +w   w, 
E  [  x    y    x y    x o,y   o,x y 

T"  r 3"  h 

E | 2  'xxi    E  j 2  yy 

h T" 

E h w, 
xy xy 

\   |t(tf^;(i)2>(i)(i)+t(^) 

8(l-v v ) 
X Y 

2  2     2 2      2     2 
h w,   +hw,  +(vh  +vh)w, w, 
x  xx    y yy    y x    x y   xx yy 

2(l-v v ) 
x y u2    2 h w, 

xy xy 
cLxk (43) 

Equation (43) now contains only displacements and midsurface stresses as 

variationally dependent quantities, A stationary value of equation (43) 

is then sought with respect to the free parameters ;.., A.., and CJ/E 
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(see Appendix V) ; the resulting set of nonlinear algebraic equations 

is reducible to four equations in the unknowns  |  , ^  , in7 t  and 

j/E. These four equations are then used to construct the all-elastic, 

load-end shortening curves presented in Figure 5 for rtpresentative 

values of the buckle wave parameters  |-, T], and i and the orthotropic 

shell stiffness parameters s', s', s' , s', s", s", s" , and s". r x  y  xy      x  y  xy* 

Inelastic Problem 

In the inelastic problem, equation (42) must be used , As pointed out 

in the sandwich shell maximum-strength analysis of the present work and 

in the conventional shell maximum-strength analysis of reference &, the 

resulting number of free parameters is 17. A stationary value of 

equation (42) is sought with respect to i.., A.., a.., b.., d1,,and 

cr/E. Maximum-strength, material-dependent, load-shortening curves are 

obtained and presented in Figure 6 for 2024-T3 aluminum and stainless 

steel(1/2 hard). The stress-strain curve for the latter is shown in 

Figure 7. Values of the buckle wave parameters and the stiffness 

parameters are the same as those used in the elastic analysis. 
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RESULTS AND DISCUSSION 

The maximum strength of Initially imperfect, axially compressed, Isotropie 

sandwich and orthotropic stiffened shells (eccentricity effects 

included) has been studied through the use of a modified form of Reissner's 

varlational principle, the von Karman-Donnell stain-displacement rela- 

tions, and a deformation theory of plasticity. Maximum-strength, 

material-dependent, load-shortening curves have been obtained for stain- 

less steel and 2024-13 aluminum cylinders. The results are compared with 

the load-shortening curves obtained for both sandwich and stiffened 

circular cylindrical shells when the materials remain linearly elastic. 

In conducting the numerical analyses involving inelastic deformations, 

Poisson's ratios v, v , and JJ.  have each been assigned the value 

0.5. Trial computations, in which these Poisson's ratios were varied 

between 0.3 and 0.5, indicated that the incompressible-material assump- 

tion (that is, Poisson's ratios equal to 0.5) relative to the direction 

of loading led to negligible changes in the results based on varying 

values of v, v , and u • Poisson's ratios u„ and v  have been 
' x*   ** ^y     y 

calculated from the reciprocal relations u « E u /E and v = D v /D r 'y   y Tc x     y   y x x 
to ensure synnaetry in the orthotropic material constant's matrix. 

CIRCULAR CYLINDRICAL SANDWICH SHELLS 

The effects of transverse shear and inelastic deformations on the maxi- 

mum strength of circular cylindrical sandwich shells with Isotropie cores 

have been established in this analysis. Considerations of the face- 

wrinkling and face-dimpling instability modes have been neglected since 

the interest herein has been aimed at the bending and buckling in general 

InstabiilLy. 

Based on all-elastic behavior, transverse shear effects markedly reduce 

the maximum load of a cylindrical sandwich shell, as shown in Figure 2. 

This trend is consistent with the classical results presented in reference 

24. For 6 * 0.02 (a reasonable imperfection amplitude for an 

"effectively" thick sandwich cylinder),the uppermost curve represents 

the all-elastic, load-shortening curve for an Isotropie sandwich cylinder 
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with a rigid cor«, F a 0. Th« curv« for r " I r«pr«««ntf « sandwich 

cylinder with finite trenverse shear stiffness cf the core. The partic- 

ular value of the shear stiffness parameter is representative of the 

weak-core materials used in practice. It is noted that for F " 1, the 

reduction in maximum load from that obtained for the sandwich cylinder 

with a rigid core is 6$;  thus, for a larger value of F  (weaker core), 

the reduction in maximum load would be substantially greater. A similar 

trend was obtained by Mayers and Chu  in their maximum load analysis of 

isotropic sandwich plates. 

Inelastic effects are incorporated into the analysis by introducing 

actual stress-strain curves. In the case of 2024-T3 aluminum, the 

uniaxial stress-strain curve is shown in Figure 4. As a result, maximum- 

strength, (R/h) - dependent, load-shortening curves are obtained and 

presented in Figure 3. The upper curves represent all-elastic behavior 

for infinite (F = 0)  and finite (p = 1) transverse shear stiffnesses, 

respectively. The lower curves show the effects of inelastic behavior 

on two 2024-T3 aluminum sandwich cylinders of (R/h)= 200 with F = 0 

and F = 1,  respectively  As can be seen, the maximum load is reduced 

6^ by introducing finite tranverse shear  (F = 1) and is reduced 

an additional 14^ by including the effects of inelastic behavior in the 

face sheets. It can be noced also that for a rigid core (F = 0), the 

reduction in load-carrying capability, due to inelastic deformations, 

is 16^. However, as mentioned above for a cere of finite transverse 

shear (f =1). the maximum load was reduced 14^ due to inelastic behavior. 

It might be concluded, therefore, that plasticity affects a rigid-core, 

isotropic sandwich cylinder to a greater degree than one with finite 

transverse shear stiffness; this trend was noted by Mayers and Chu 

in their maximum-strength analysis of isotropic sandwich plates. This 

phenomenon in both sandwich plates and cylinders is attributed to the 

fact that the finite transverse shear permits stress relief across each 

buckle,causing a lower effective strain and, consequently, less reduction 

in maximum load due to inelastic deformations. However, from the stand- 

point of inelastic deformations alone, this isotropic sandwich shell of 

2024-T3 aluminum reflects not only (R/h) - dependence of the load- 
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shortening curve for a sufficiently low (R/h) ratio (the same effect 

established for conventional shells in reference 4), but a significant 

reduction in maximum strength. 

ECCENTRICALLY STIFFENED. CIRCULAR CYLINDRICAL SHELLS 

The maximum strength of initially imperfect, axially compressed, 

eccentrically stiffened, circular cylindrical shells has been obtained 

for material properties corresponding to stainless steel (1/2 hard) and 

2024-T3 aluminum. 

The results of a purely elastic analysis, presented in Figure 5, reflect 

load-shortening curves for integral, longitudinally stiffened, circular 

cylindrical shells. The integrally stiffened shell cross section, shown 
12 

in Figure 5, is identical in geometry to that used by Card and Jones 

in their studies on the buckling of eccentrically stiffened cylinders. 

The values of the buckle wave parameters, namely, p = 0.5 and T\ = 0.25, 

have been selected to correspond with those of experiment (see reference 

12). A reasonable value of the imperfection parameter, A = 0.5, was 

selected; and the value of the eccentricity constant, C = 60, was 

adjusted to yield an accurate representation of the effects of eccentric- 

ity on the maximum load of both outside and inside, longitudinally 

stiffened, cylindrical shells (see reference 12), The upper and lower 

curves in Figure 5 correspond to externally and internally stiffened 

cylinders, respectively.  Both types possess the same integral stiffener 

cross section.  It can be noted that the externally stiffened shell 

carries 38% more axial load than its internally stiffened counterpart, 

a result which is consistent with those obtained in references 12 and 

23. However, this may not always be the case, due to the findings of 
25 

Hutchinson and Amazigo  . They show that for certain ranges of the 

curvature parameter, Z = —«Vl-v^  , an outside stiffened shell is 
R^ 

much more imperfection sensitive than one with inside stiffening.  How- 

ever, in the present analysis, the stiffened shell configuration is in 

the large Z range and, therefore, is out of the region in which an 

outside stiffened shell should be any more imperfection sensitive than 

one with inside stiffening. 
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The effects of inelastic behavior are displayed in Figure 6 by using the 

stress-strain curve of stainless steel (1/2 hard), shown in Figure 7, 

and perturbing from the free elastic parameters which were used to develop 

the all-elastic behavior curves in Figure 5. The results in Figure 6 

show that for the externally stiffened shell, the reduction in maximum 

load from chat obtained in the purely elastic analysis is 23y,  whereas 

the reduction in load-carrying capability for the internally stiffened 

shell is 15^.  Thus, it might be concluded that the effects of eccen- 

tricity for longitudinally stiffened cylinders are seen to decrease with 

the presence of inelastic behavior. This trend was noted by Jones 

in his study of stiffened shells which buckle initially in the plastic 

range; it is attributed to the fact that the effective stress is greater 

for outside stiffened cylindrical shells at maximum load than for 

cylinders stiffened on the inside. This leads to a larger effective 

strain for outside stiffened cylinders and, consequently, a greater 

reduction in maximum load due to inelastic behavior.  It should be 

emphasized that despite the significant reductions in load-carrying 

capability due to inelastic behavior, the integrally stiffened cylinders 

of the present analysis buckle well below the 0,2^ offset yield stress 

of the material (stainless steel (1/2 hard)1!.  Therefore, buckling 

analyses of the types presented in references 5, 6, and 26 are not 

valid for application to the present maximum-strength problem where, 

in the absence of initial imperfections, elastic buckling would occur. 

After using the stress-strain curve for 2024-T3 aluminum (see Figure 4), 

it was determined that the reductions in maximum loads of both outside 

and inside integrally stiffened cylindrical shells (with the geometry 

shown in Figure 5) fr.tm those obtained in the purely elastic analysis 

were negligible; that is, essentially elastic behavior governed the 

particular shell analyzed.  However, extreme caution should be exercised 

in any desigr procedure involving stiffened shell construction wherein 

plastic buckling is precluded, since large reductions in maximum load 

can occur for imperfect shells and a variety of materials characterized 
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20 
by « ■mall exponent (say, 3-5) in the Ramberg-Oigood  stress-itrain 

curve representation. This behavior Is demonstrated not only in reference 

4 but also by the previous results obtained herein for stainless steel 

cylinders. In addition, for larger values of n and reduced (R/T) 

ratios (for example, 75-100), even aluminum cylinders (N ~9) will bend 

due to imperfections and reach a maximum strength and fail rather than 

buckle plastically from the undeformed state. 

Correlation between experimental and theoretical results has been 

achieved by comparing the maximum compressive load of an outside, 

integrally stiffened, 2024-T3 aluminum cylindrical shell of reference 12 

(L/R = 4) with the maximum load obtained through the present analysis. 

Since the stiffened cylinder edges of reference 12 are clamped and those 

of the present analysis are "effectively" simply supported, the differ- 

ence between the classical buckling loads for clamped and simply supported 

edges has been added to the maximum load of the present elastic 

analysis for an outside, integrally stiffened cylindrical shell. As a 

result, the maximum load agrees with the experimental maximum load of 

reference 12 to within 2%. 

Therefore, it is believed that sufficient evidence has been given to 

conclude that, in addition to boundary conditions, initial imperfections, 

prebuckling deformations, and eccentricity effects, inelastic deformations 

should not be excluded from initial buckling (maximum strength) analyses 

of stiffened, circular cylindrical shells in axial compression.  In scale 

structures, the most efficient eccentrically stiffened shell (at least 

for axial compression) would be one whose (R/t) ratio precludes plastic 

buckling, but is not so large for a given material that imperfection 

sensitivity and inelastic deformation significantly reduce the initial 

buckling (maximum load). A great deal of experimental work is required 

on practically fabricated metal shells of various materials in the range 

50 < R/t < 250 to discern the relative effects of stress-strain curve 

shape and initial imperfections. 
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COKCLUPIWG BgMMKB 

The maximum«-«trength analysis of Initially Imperfect,axially compressed, 

sandwich and eccentrically stiffened, circular cylindrical shells has 

been undertaken to establish the effects of transverse shear (sandwich 

case only), Inelastic deformations, and geometry dependence on the 

load-shortening curves for given materials. Although numerical results 

are given only for the special cases of Isotropie sandwich and longi- 

tudinally stiffened shells, the theory and solution procedure are 

applicable to orthotropic shells in general. 

CIRCULAR CYLINDRICAL SANDWICH SHELLS 

In the absence of inelastic behavior, it in demonstrated that transverse 

shear deformations reduce the niaximum load-carrying capability,of an 

imperfect, Isotropie sandwich shell. When inelastic deformations are 

taken into account, not only is the maximum load further 

reduced, but the load-shortening curves reflect a significant (R/h)- 

dependence. This dependence is not evident in any elastic analysis. 

Future work should be directed toward establishing the effects of 

inelastic deformations in the core in conjuction with failure not only 

in general instability (the present analysis) but also in the face- 

wrinkling modes. 

ECCENTRICALLY STIFFENED. CIRCULAR CYLINDRICAL SHELLS 

In the absence of inelastic behavior, it is shown that outside stiffened 

cylindrical shells are capable of carrying higher compressive 1c ids 

than internally stiffened shells. This result is consistent with those 

surveyed in references 1-3. However, in the presence of inelastic 

deformations, the present analysis shows that the load-carrying capability 

of both outside and inside stiffened, stainless steel (1/2 hard) shells 

of R/t = 167 is significantly reduced. Corresponding calculations 

for 2024-T3 aluminum shells of the same geometry reveal negligible 

reduction in the maximum load b^ised on purely elastic behavior. Thus, cau- 

tion should be exercised when dealing with maximum-strength analyses of 

shells having relatively low exponents (for example, stainless steel, N=3) 
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In the Ramberg-Osgood stress-strain curve formilatlon.  For shells of 

materials possessing higher exponents (for example, 2024-T3 aluminum, 

N = 9), caution should be exercised as the (R/t) ratio approaches 100. 

For such shells, initial-imperfection effects are minimized, but plastic- 

ity effects are maximized. Until sufficient experimental evidence is 

developed to prove otherwise, it is believed that the most efficient 

longitudinally stiffened shells for axial compression loading are those 

which lie between the plastic buckling failure mode and catastropic snap 

through failure in a purely elastic mode.  In addition, it is shown, on 

the basis of the stainless steel (1/2 hard) results, that the marked 

difference between the maximum strengths of outside and inside stiffened 

cylinders based on all-elastic behavior is significantly reduced when 

inelastic effects are taken into account. As a result, the choice of 

outside stiffening to achieve greatly increased elastic-analysis-predicted 

maximum strength relative to the choice of inside stiffening should be 

viewed with discretion. 

Although limited numerical data are presented herein, the overall results 

are consistent with those established in reference 4 for unstiffened 

cylinders in axial compression. That is, regardless of the type of 

structure (pure raonocoque, sandwich, or eccentrically stiffened), it is 

obvious that any initial buckling (maximum strength) analysis of 

practically fabricated cylindrical shells must include the effects of 

initial imperfections, boundary conditions, prebuckling deformations, 

and inelastic deformations. The material-geometry combination that is 

the most efficient may be predicted from application of the present 

theory and analysis procedure for sandwich and eccentrically stiffened 

shells to a wide variation in physical parameters. However, without 

substantial experimental effort to establish confidence in the analytical 

approach, significant weight reduction in aerospace vehicle designs, a 

major portion of which involve shell structures, will not be realized. 
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»V»o=0 

Figure 1.  Circular Cylindrical Shell With Two-Element Cross Section. 
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Figure 2.  Purely Elastic, Load-Shortening Curves for Isotropie 
Sandwich, Circular Cylindrical Shells. 
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Figure 3.  Loaa-Shortening Curves for 2024-T3 Aluminum, Isotropie 
Sandwich, Circular Cylindrical Shells. 
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Figure 4.     Stress-Strain Curve  for 2024-T3 Aluminum. 
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.3 STRINGER STIFFENED 
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A=.5       C=60 

.2 

<rR 
ET 

!R/t 

Figure 5. Purely Elastic, Load-Shortening Curves for Eccentrically 
Stiffened, Circular Cylindrical Shells With Longitudinal 
Integral Stringers. 
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Figure 6. Load-Shortening Curves for Stainless Steel (1/2 Hard), 
Eccentrically Stiffened, Circular Cylindrical Shells 
With Longitudinal Integral Stringers. 
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Figure 7.    Stress-Strain Curve for Stainless Stell  (1/2 Hard). 

35 



LITERATURE CITED 

1. Hoff, N. J., THI" SHELLS IN AEROSPACE STRUCTURES, Fourth Theodore 

von Karman Lecture Presented at the Third AIAA Annual Meeting, Nov. 29, 

1966; Aeronautics and Astronautics. Feb. 1967, pp. 26-45. 

2. Hoff, N. J., THE PERPLEXING BEHAVIOR OF THIN CIRCULAR CYLINDRICAL 

SHELLS IN AXIAL COMPRESSION, Second Theodore von Kifnmfn Memorial    ' 

Lecture of the Israel Society of Aeronautical Sciences, 1966. 

3. Stein, M., RECENT ADVANCES IN THE INVESTIGATION OF SHELL BUCKLING, 

AIAA Journal, Vol. 6, No. 12, December 1968, pp. 2339-2345. 

4. Mayers, J. and Wesenberg, D. L., THE MAXIMUM STRENGTH OF INITIALLY 

IMPERFECT AXIALLY COMPRESSED CIRCULAR CYLINDRICAL SHELLS, Stanford 

University; USAAVLABS Technical Report 69-60, U.S. Army Aviation ■ 

Materiel Laboratories, Fort Eustis, Virginia (in publication); 

(also, presented at the AIAA 7th Aerospace Sciences Meeting, AIAA 

Paper No. 69-91, New York, January 20-22, 1969). 

5. Lee, L. H. N., INELASTIC BUCKLING OF INITIALLY IMPERFECT CYLINDRICAL 

SHELLS SUBJECT TO AXIAL COMPRESSION, Journal of Aerospace Sciences. 

January 1962, pp. 87-95. 

6. Batterman, S. C, PLASTIC BUCKLING OF AXIALLY COMPRESSED CYLINDRICAL 

SHELLS, AIAA Journal, Vol. 3, No. 2, February 1965, pp. 316-325. 

7. Timoshenko, S., EINIGE  STABILITÄTSPROBLEME DER ELASTIZITATSTHEORIE, 

Zeitschrift fur Mathematik und Physik. Vol. 58, 1910. 

8. Lorenz, R,, ACHSENSYMMETRISCHE VERZERRUNGEN IN DÜNNWANDIGEN 

HOHLZYLINDERN, Zeitschrift des Vereines Deutscher Ingenieure. Vol. 52, 

1908. 

9. Southwell, R. V,, ON THE GENERAL THEORY OF ELASTIC STABILITY, 

Philosophical Transactions of the Royal Society of London, Series 

A, Vol. 213, 1914. 

10.  Peterson, J. P., and Anderson, J. K,, STRUCTURAL BEHAVIOR AIJD 

BUCKLING STRENGTH OF HONEYCOMB SANDWICH CYLINDERS SUBJECT TO 

36 



BENDING, National Aeronautics and Space Administration, NASA 

Technical Note D-2926, August 1965. 

11. Cunningham, J. H., and Jacobson, M. J., DESIGN AND TESTING OF 

HONEYCOMB SANDWICH CYLINDERS UNDER AXIAL COMPRESSION, Collected 

Papers on Instability of Shell Structures - 1962, Nations! Aeronau- 

tics and Space Administration, UASK  Technical Note D-151C, December 

1962, pp. 341-359. 

12. Card, M. F., and Jones, R. M., EXPERIMENTAL AND THEORETICAL RESULTS 

FOR BUCKLING OF ECCENTRICALLY STIFFENED CYLINDERS, National 

Aeronautics and Space Administration, NASA Technical Note D-3639, 

October 1966. 

13. Reissner, E., ON A VARIATIONAL THEOREM IN ELASTICITY, Journal of 

Mathematics and Physics, Vol. 24, No, 2, July 1950, pp. 90-95. 

14. Kempner, J,, POSTBUCKLING BEHAVIOR OF AXIALLY COMPRESSED CIRCULAR 

CYLINDRICAL SHELLS, Journal of Aeronautical Sciences. Vol. 17, 

May 1954, pp. 329-335, 342. 

15. Mayers, J,, and Nelson, E., MAXIMUM STRENGTH ANALYSIS OF POSTBUCKLED 

RECTANGULAR PLATES, Presented at AIAA Sixth Aerospace Sciences 

Meeting, AIAA Paper No. 68-171, New York, January 1968. 

16. Mayers, J-, and Rehfield, L. W., Developments in Mechanics, Vol. 3. 

Part 1, (Proceedings of the Ninth Midwestern Mechanics Conference, 

Madisor, Wisconsin, August 16-18, 1965), John Wiley and Sons, Inc., 

New York, 1967, pp. 145-160, 

17. Mayers, J,, and Chu, Y, Y., MAXIMUM LOAD PREDICTION H)R SANDWICH 

PLATES, Stanford University; USAAVLABS Technical Report 69-3, 

U.S. Army Aviation Materiel Laboratories, Fort Eustis, Virginia, 

April 1969, AD 690215. 

18. Mayers, J., and Budiansky, B., ANALYSIS OF BEHAVIOR OF SIMPLY 

SUPPORTED FLAT PLATES COMPRr^SED BEYOND BUCKLING INTO THE PLASTIC 

RANGE, National Advisory Committee for Aeronautics, NACA Technical 

Note No. 3368, 1935. 

37 



19. Mayers, J., Nelson, E., and Smith, L. B., MAXIMUM STRENGTH ANALYSIS 

OF POSTBUCKLED RECTANGULAR PLATES, Stanford University, Department 

of Aeronautics and Astronautics Report, SUDAAR No. 215, December 1964. 

20. Ramberg, W., and Osgood, W. R., DESCRIPTION OF STRESS-STRAIN CURVES 

BY THREE PARAMETERS, National Advisory Committee for Aeronautics, 

NACA Technical Note No. 902, 1943. 

21. Mayers, J., and Wrenn, B. G., DEVELOPMENTS IN MECHANICS, Vol. 4, 

(Proceedings of the Tenth Midwestern Mechanics Conference, Fort 

Collins, Colorado, August 21-23, 1967), Johnson Publishing Co., 

1968, pp. 819-846. 

22. Tennyson, R. C, and Welles, S. W., ANALYSIS OF THE BÜCKLING PROCESS 

OF CIRCULAR CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION, Institute 

of Aerospace Studies, University of Toronto, February 1968.  (In 

process of publication in AIAA Journal). 

23. Block, D. L., Card, M. F., and Mikulas, M. M., BUCKLING OF ECCEN- 

TRICALLY STIFFENED ORTHOTROPIC CYLINDERS, National Aeronautics and 

Space Administration, NASA Technical Note D-2960, August 1965. 

24. Stein, M., and Mayers, J., COMPRESSIVE BUCKLING OF SIMPLY SUPPORTED 

CURVED PLATES AND CYLINDERS OF SANDWICH CONSTRUCTION, National 

Advisory Committee for Aeronautics, NACA Technical Note No. 2601, 

January 1952. 

25. Hutchlnson, J. W., and Amazigo, J. C, IMPERFECTION-SENSITIVITY OF 

ECCENTRICALLY STIFFENED CYLINDRICAL SHELLS, AIAA Journal. Vol. 5, 

No. 3, March 1967, pp. 392-401. 

26. Jones, R, M., PLASTIC BUCKLING OF ECCENTRICALLY STIFFENED CIRCULAR 

CYLINDRICAL SHELLS, AIAA Journal. Vol. 5, No. 6, June 1967, 

pp. 1147-1152. 

27. Yoshlmura, Y., ON THE MECHANISM OF BUCKLING OF A CIRCULAR CYLINDRICAL 

SHELL UNDER AXIAL COMPRESSION, National Advisory Committee for 

Aeronautics, NACA Technical Memorandum No. 1390, Washington, D. C, 

July 1955. 

38 



APPENDIX I 

EULER EQUATIONS AND BOUNDARY CONDITIONS DERIVED 
FROM A REISSNER FUNCTIONAL FOR A SANDWICH 
CYLINDER WITH PRESCRIBED END SHORTENING 

The Reissner functional for prescribed end shortening Is defined as 

U" = fff (a €,,+ a e + T 7 + x    y     + T 7  - F") dV     (44) JJJ   v xx  y^y   xy'xy   xz'xz   yz yz    ' v ' 
V 

The von Karm^n-Donnell strain-displacement relations, modified for the 

two-element cylinder (see Figure 1),  and including initial radial deform- 

ation and transverse shear effects, are 

12 h 
e = e' ± e" = u, +-r w,   + w     w,    ± rr (w,      - 7       ) 
x    , xx        'x 2     'x        o,x 'x      2   v   'xx      'xz.x 

t > 0 

1   .    n ,12, w      h   . . e =  e   ± e   = v,    + -r w,    + w     w,    - - ± -r (w,      - 7       ) 
yt b        Y        y y      2     'y o,y  'y      R      2   v   'yy       ^z.y"' 

^t.b =  ^y ± ^xy ' % + V'x + W'xW'y 
+ Wo,xW'y + Wo.yW'x 

±h(w'xy-I>xz.y -^yz,^ (45) 

The stresses in the top and bottom faces in term:: of the midsurface and 

bending components are 

a   = a' ± a" 
xt.b   x  x 

yt>b   y   y (46) 

T       = T1  ± t" 
xyt>b   xy   xy 

After integration through the top and bottom faces and the core of the 

sandwich cross section, equation (44) becomes 

L 2jtR 

ff U" ' tc f f \o e  +a e     + 0    e +3    e. fJ J ) xt xt   xb%   ^t yt   yb yb 
0 0     v 
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+ T   /    + T   v    + ■— (T  >   + T  V  ) - (F' + F') xyt xyt   
xyb xy.   tf  xz xz   yz yz     t   b 

F"! dxdy 

Substitution of equation (45) into equation (47) leads to 

U" = t. If      t/a  +J 1 [u, + | w, + w, w 

Vo    i'Xt      Xb'l   X X 

+
 (ayt 

+ Jyb)   | v'y + I % + w'ywo.y " ! 

+     / T +   T I     I V,     +  U,      + W,   W,     + W,   W + W,   W 
I   xyt        xyb I x y 'x  'y        'x o.v        'y o,x 

+{\ - °4 h^' 7xz'xl+(ayt" a$ lw 

+
 Nt " Vb)h [W'xy " I ^xz.y " I WJ  + t 

(47) 

yy      yz.yi 

_c 

■f 

X    7 
X3 xz 

+ T    y 
yz yz 

2 2 
t     f  T t 

. i^l^M+Jij    - /F« + F'\j dxdy 
2  t,    G G f l   xz        yzj 

The average stresses and the bending moments are 

1 
a' = -z (a     + a ) 
x  2 v xt   x, 

t    b 

(48) 

a1 = ^ (J  + a ) 

r' . i (T   + T  ) 
xy  2  xyt   xyb 

M = -tc - (j  - a ) = -t,, h a" 
x    f 2 v x^   x, ^    f   x 

t    b 

M = -tp ^ (r  -7    ) = -tf h J" 
y       f 2    yt     yb        f     y 

(49) 
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M     ' tc% (-        - t      )  ' tf h r" (49) 
xy        f 2   v xyt        xyb f        xy 

Substitution of equation  (49)   into equation  (48)  gives 

L 2nR 

U" - Zt.    ff 0'   (u,    +^w,2+w, w      ) 
f JJ /  x      'x      2     'x x o,x 

0 0 ' 
12 w 

+ J7   (v,    + x w,       + w,  w - „)  + T'     ("»    + v»    + w» w» y        y      2       y y o,y      R xy        y 'x x  'y 

M M 
+ w     w,    + w      w,  )   •    T-    (w,       - y.        v   - 'TT    (w.       - y        ) 

o,x    y        o,y 'x'        2t xx       xz,x)      2tf      'yy        yz.y 

M t   • 
+ -7^  (w,       - 7 v - - y        )  + —£-    (t    7      + T     7    ) 

t,        'xy      2    xz,y      2    yz.x        2t, xz xz        yz yz 

t T               T2 

i      c / Txz       %z \ - F' I   ,   . 
4 i: — + G )     i dxdy f \    xz         yz'            i 

(50) 
I j   u*uy 

yz' 

with cognizance taken of the  fact that 

ÖF-l^ßa'+l^öa'+l^-ßx'      +     ^öM+^ÄI+l^-ßM äa1      x      äa'      y      ^T'        xy SM       x      ^M       y      3M xy x y      ^ xy        J x ^y'^xy        ^ 

The vanishing of the first variation of Ü" with respect to a', a' 
x      y 

x*   ,  T    , T    , M , M , M    , u, v, w,  >    ,  and y       requires that 
xy      xz      yz      x      y      xy xz yz 

L 2-R 

eü" = 2t,. ff I53     (u,    + ^ w,2 + w, w      )  +    6cJ     ( v, 
tjj I    x        x      2       x x o,x y 'y 

C 0 I 
12 w 

+  ^   W,       +   W,    W -   -)       +   ÖT1        (l.,       +   V,       +  W,   W, 
2       y y o,y      R7 xy y x x    y 

+ w      w,    + w      w,   )   + J     (6u,    + w,   öw,    + öWt w      ) (51) o,x    y        o,y    x x    u 'x x      x x o,x 

+ a    (6v,    + w, öw,    + 6w, w       -    D)  
+ T      (6U.    + 6V. yy yy yo,y        R xy y x 

6M 
X + 6w, w,    + öw, w,    + öw, W        + &J,  w      )   - -TT—  (w, x    y y    x x o,y y o,x        2t 'xx 

6M 6M 
7          ) - TT^  (w,     - v         )   ■ *z (w, xz.x 2tf       'yy yz.y f xy 
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^yz.y)+^    ^xy-i6yxz.y-i^yZ.x>+2r    ^xz\Z 

+ fi-r    7     + T yz yz        xz ̂ xz+ v6V) ' 21; (r" 6Txz+ ^ 6Ty2) ■ f^ ^ 

äJLL M' - all- AT« -■^•»I - ^-    m    - ^-— ÄI ' dxdy = 0 
aa;   y  aTxy   

xy  aMx  X  3My   y  aMxy   Xy) xy 

Integration by parts, as appropriate,  leads to 

L    2nR 

(51) 

6U" = 2t     /   /    )/u,    +-J w,2 + w, w        - Irr  i    öa' u f ^ J     )\    x     2    'x        'x o,x     aa'   /        x 
0    0    *V ' 

o,x%+ •o.y"-« ■ If;) ^-[^T ("■ + w, w,    + w 
'x    y xx 

;,xl 7xz.x| +aMx 
5M 'x   -   [2^(w'yy^yz.y)+   ^   ^y yy      yz 

+ [t^   (W,xy "2 7xz,y ' 2 7yz,x) 

-/a'      +T,        Ißu-fff'      +T,       \ \  x,x        xy.y ^ ^ y,y        xy,x j 

+ Vx D'x   +   {°y  K + Vy|)-y 

3M     I      ^xy xyJ 

6v 
("« 

w,    + w 
y        o,y 

a1 

- -i+ •A rr"   (M + M - 2M ) 2tf    ^  x,xx        y,yy xy.xy / 

w,    + w 
X o.x 

6*-^- M 
x,x 

42 



M -   t      T 
xy, y        c    xz Kz ■ 2rf 

M        - M - t    T     ]    to 
y.y      «y.«      c ^yz 

+ ^ 

xz 
'xz      G 

xzj 
5^+   2t7 

T 

'yz      G 
' yz 

«   T I     A   A yz J    dxdy 

2rtR 

2t      /     a"  fiuj    dy + 2tf  /  a«  6v|    dx 
2äR 

0    ■'       0 

+ 2tf    /      [a-    (w,    +w      )   + T'      (w,    + w      \   +-J^   H 
J        j   x    \    x        o.x/ xy    \  'y        o.y/    ^ 2t      Mx>3 

7~   M 
tf      xy,y 

L 

I 
0 

awl    dy + 2t     f   \a'    L,    + v     \ 
* JQ   [y \ y    o.y/ 

+ T'      jw,    +W      \+-LM        -—    M Ifiwl 
xy    \   'x        o,x^        2tf       y,y      tf      xy,x      W I 

2jrR 
dx 

0 

o ö o o oxxo 

-/Myöw. 
25TR 

dx    + 2M 
y A xy 

o 7       o 0 "0 

L 2jtR /**R L 

n ft rt      x      xz  - iy 

/M   5r 
y    J 

2nR 
!   '   My 57y2 |      dx r        r       2jtR 

7   Mxv 6^. I      dx 

.2:TR 

xy      xz J    M    or   i 
o    xy   yzQ 

dy ■ 0 

(52) 

For equation (52)   to vanish for simultaneous arbitrary variations in 

the states of stress and displacement,  each of the above terms must 
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•    l_ I        I ■-I 

^ 

lfi£««ffüce c^Kilikri» cqaarioas an 

Core-shear c^wilibriaa e^nacioas are 

S».« *    xy.y '  "« 

M        - M - t    -      - 0 
y.y      «y.«      e   yz 

Lateral e^uilibriun equation is 

i5A" 

155» 
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- «%        y        a.r     x      ■ »y        s        ».z ' y w ' 

• 

SrfescilMCi«) 9t tqmnim fS5f  ia«> **nti'« »SI?  l«»«s ce chz siaplific*. 

Ucf «1 cfailibriiiia c^vacioa 

y       ff       *,7T «F «y        o,x< 

-?*^r-ai ** -2K J»« (St} 
■    ^^j    «.«»      y.yy «y»>qr 

Trj—wer— skear str«ss*«tnia r*l*tlam* 

m Q       r 

159) 
-      • C    .- 
y»     y« T* 

TW aUsvrface scress-displaceacrc boaadary iatcgrals arc 

/" 

» L 
?' fel    4y (60a) 

•     *       • 

**. (60b) 

•    ft»j    4y (60c) 
17       0 

2-E 
i 

0 
f     -^  fr« ^      #K CS©<0 

0 

The remaining boundary integrals are 
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. L 

tf xy.y    9 

y  y  «,T  »y  x  «.«  «t y.y 

- — H   ' 6vi <z - 9 (61b) 

2i»   L 

f n  bt\ 

8    I  Irt 

2s2 
i «fa - 0 i61d> 

«y    c   c 

.2.-R 
(em 

M ör_! dx - 0 (61g) 

/^M 6r„i «fct- o (oih) 
J «y «o o 

/  Mxy 67y^ dy' 0 (61i) 

0 

Since the end shortening is prescribed, Ju vanishes at x = 0, L. The 

remaining boundary integrals, evaluated at x * 0,L, can be ignored 

due to the very large L/R ratio assumed for the sandwich cylindrical 
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APPESSIX  II 

ElUbt EQiAIIOSS A» BOCSM1Y OOmiUCSS DEMIVEB FBOH 
THE IEISSXES FVSCTIOKLL Ft» AX OKTBOTK^IC. 

ivo-tuxxt cruaxt VITH PEESCRIBED 
 Bg SFJKTEglMC  

The Seissaer functional for prescribe end shortening is 

C" ■ //T «-€♦-£*:     - F1) d¥ (62) 

V 
where- the core of the tw-eleaent cylinder has been assumed rigid in 

shear. 

The von Krfnrfa-Dunnell str^ia di i,l.-eaent relations for the orthotropic, 

two-eleaent cylinder, oodlfied to include initial radial  isperfections, 

are 

1      2 hx c * e' ± e" m u,    + r w-    + w, w       ± —r w, *x    . x        x x      2    'x        'x o,x       2    *xx 

yt b        y        y y      2      y y o,y      R        2    'yy (63) 

r »   v'     i /"    =  u,     + v,     + w, w,    + w      w,     + w      w,     ± h    w, 
xyt b        xy        xy *y 'x 'x 'y        o,x  'y        o,y  *x        xy 'xy 

where h , h , and h   are introduced to account for bending stiffness 
x  y       xy 

orthotropy. The distances h  and h  separate the faces normal to 
x      y 

the x- and y-directions, respectively, and h   is a fictitious weighted 
xy 

averaee of h  and h . The orthotropic bending stiffnesses are related 0     x      y 
to h , h , and h   in the following way: 

x  y       xy 

"f^ 
Dx = -T- 

Ft h 
f y 

D = —^  
y   2 

(64) 
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_ .2 
£.t,h 

D . L£I  w 
xv *M^) 

The stiffnesses D , 0 . and D   couid oe obtained, for exaaplesfros x  y        xy r 

laboratory tests >n the particular orthotiopic structure of interest. 

The stresses in ceras of sidsurcace and bending coaponents arc 

«  - ■  _ 

-vt.b    *- 'y 

x>' t.b   «y 
± -" 

*y 

(65) 

After integration through the zco and bottom faces of the two-element 

section, equation (62)  becomes 

L 2r.R 

/ 
0    0 

f / /        |  Xt    Xt        Xb    Xb        ^t    ^t        >b    ^b 

+ t y        + T -, -   (F' + F')'   dxdy (66) 
xyt 

xyt     
xyb 

xyb      
t     b) 

Substitution of   equation  (63)   into equation  (66)  gives 

U" =  t 
//>., 

1      2 
f JJ        \    *t        xu     L   'x      2     'x 'x o,x- 

0   0 

12 w 
yt       yb y     2      y       o,y    y     R 

+   (T        + '       )   Fv,    + u,    + w,  w,    + w,  w        + w      w,   1 
xy xy x y xy xo,y        o,xy 

h 
n .   / \    y ,   , ,    x w,     + (o     - J   ) —* w, 

+  (ax    ' ax ) ~2      XX yt        yb      2      yy 

t " b 

h9 



+ (T   - t  ) h w.  - IF' + F'). djtdy 
yt    ^b   "y "^     r    b I 

The average stresses and bending aooents are 

cf* • |'(<J  + r ) 
X  2  xt   «b 

y   2    y-     ys 

xy  2  xyt   xyb 

h 
M - - t_ -f (<r - a   } ' -%. h   a» 
x     f      xt   yb     i x x 

h 
M » -t, -4 (a  - a ) « -t^ h a" 

y      f  2    yt     yb        f >  >' 
h 

M  - t. -I2 (T   - T  ) >= t, h  T" 
xy   f 2    xy    xy.    f xy xy 

Substitution of equation (68) into equation (67) yields 

U" - 2t •//  Ja' (u, +7W,2+w, w 
i J J       ) x   x  2 'x   'x o,J 

0 0  ^ 

• /   , -  2 . w , + a' (v, + r w, + w, w  - - ) 
y   y  2  'y   'y o,y  R 

+ T1  (u, + V, + w, w, + w  w, + w  w, ) 
xy  'y    x    y x   o,x y   o,y x 

(67) 

M        M        M .1 

(68) 

-^W'xx-2^W'yy
+^W'xy-

F,jdxdy 

which is identical to that derived In reference 4. 

The vanishing of the first variation of U" with respect to a', a', 

T' , M , M , M , u, v, and w leads to the Euler equations and 
xy  x  y  xy   , 
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boundary conditions, which arc darlvad In datall In mferenca 4. 

Strcts-dlsplacaaont relations: 

""TT " U. + ? W, + W, W %3 'x  2 'x       'x o,x 

■*—7 " V,  + X W,  + W, W ,_„ 
3^    Y  2  'y   'y o.y (70) 

r , = V, + u,  + w, w, + w  w, + w  w, 
5T'    x   'y   'x y   o,x 'y   o,y 'x 

Moment curvature relations are 

5F' c   1 
JM " ' 2tc 

W'xx x     f 

^ = - ^- w. 
^My    2tf  'yy (71) 

SF' = + 1_ 
9M      t, W'xy xy     t   ' 

Midsurface equilibrium equations are 

a', + T«   »0 
xx   xy,y 

+ cr'  «0 
^y.x  y,y 

In view of equation (7?), the lateral equilibrium equation is 

a' (w,  + w   ) + a' (w,  + w   ) + 2 T' (W,  -i- W   ) 
x   xx   o.xx    y  'yy   o,y/     xy   xy   o,xyy 

C 
+ "I + 2t- (Mxx x + Mv vv ■ 2 M    ) = 0 (73) 

K  zt^  xx,x   y,yy    xy.xy 

(72) 
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The aüdsurface  stresc-displacement boundary integrals are 

.2-R L 

I  ^ 
0 

f     r^ ßs! 1  diy - 0 (74a) 

/ 

.2nR L 
i\    6v| dy = 0 (74b) 
xy        0 

/ 

L 2«R 
ff'  6v|     dx= 0 (74c) 

y        0 

/,2nR 
T'     6u      dx =  0 (74d) 
xy      0 

0 

The remaining boundary integrals are 

2itR 
/la'   (w,    + w      ) + T'     (w,    + w     ) + -r— M 

; x      'x        o,x xy        y        o,y        2t      x,x 
0 ' 

1 I ,L 
- — M 6w      dy - 0 (75a) 

tf    xy.y)        \ 

/'a'   (w,    + w      )  + T'     (W,    + W      )  + -—r M 
I  x y r           " 

1_ 
;"x   v-.y   ■   "0jy/    ■    'xy   v-^   ■   "o x/    ■   2tf "y,y 

1 1 2ltR 

— M Owl    dx = 0 (75b) 
tf    xy.x 

L    2itR 
2 M      6w|      |=0 (75c) 

xy      o   o 
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The boundary integrals at x = 0, L either vanish because the end 

shortening is prescribed or can be ignored due to the very large L/R 

ratio assumed for the orthotropic, tvo-element cylinder. The boundary 

conditions at y ^ 0, 2^R are either continuity conditions or conditions 

which preclude any resultant shear or circumferential load along any 

generator after subsequent integration over the shell length. 
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APPEXD1X  IV 

CORKELATIOX OF TUE STIFFSESS PARAMETERS OF THE ORTH0TROF1C 
TWO-EJJ3CXT HC«)EL TO THOSE OF A ST1FFEKEC 
 CIRCULAR CYLIXDRICAL SHELL  

The classical buckling stress derived  in reference 23 for an axlally 

co-pressed, ring- and stringer-stiffened,  circular cylindrical shell  is 

.2 

10 J        G J  \    , 
Iss r r I „2 

EI .El 
I        ss     .  „fe    r r 

12 zD 
-222     j 
ta r  L       ' 

I   ,   ^ Si    + Ri_ + S R^      ) 
I  1 +      s        ~ rs ( 

where 

iZ v2 

=  1 - 2.i 

+    V    2 

Ä = (l + ß2j    + 2ß2   ll + vjl R + Sj    + (l  -  v2] 

+ 2ß2R S 
4- 

+ ß R 

(79) 

(80) 
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It -5    T 

R2t2 

D - 
Ef 

12(1  -  v') 

E A 
s s 
Etd 

R = 

a = 

ß = 

E A 
r r 
Etjfc 

TIUtR 

L 

nL 
nntR 

(81) 

The subscripts s and r refer to properties of the stringers and rings, 

respectively. Hie signs preceding the terms linear in z  and z 

(distance from the middle surface of the shell to the centroid of the 

stiffener) have been changed firom positive to negative, due to the fact 

that the z coordinate in reference 23 is measured positive outward, 

whereas in the present study, z is measured positive inward. 

The classical buckling stress of the orthotropic, two-element model is 

_L M2i   Dx 
:1TE " 2tf I Li t ! - V 

v v     ( 
X V ) 

I,* 

v D + v D 
-P ^ + 2D 1 - v v      xy 

x y      J 

E E /2t, 
x y  f 

(82) 

/itm\R E -hi E +nE 
\T)   [ X \ y X    X 

E E 

xy 

x y] ß + E ß 

24 
This equation is the same as that derived by Stein and Mayers  when the 

transverse shear stiffness is infinitely large. 

To find expressions relating the bending and midsurface stiffnesses of 

the orthotropic, two-element model to those of the ring- and stringer- 
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stiffened shell, equations  (79)  and  (82)  are equated.    For    z    - z    * 0, 

the coefficients of like powers of    ß    are required to vanish,  thereby 

leading to the relationships 

D  /2t, x      t D_ 
1    -    V   V 

x y t 
1 + 

E  I 
s  s 
dD 

D  /2t 
_Z L_ 
1  -   v  v x y 

n      T v v i 

xy      f " 2        2 + 2 

/ G J        G J \ 

\   dD mf 

H 
E I 

s  s   , 
vy ir+ vx 

E  I   \ 
(83) 

2tf"E    "    k^    =     Sx 

E k, 

2tfE k, Sy 

G s1 

2tf S + ^2 + ^\ 3 
(84) 

where 

1 + S + R + S R| 

- l+(l.v2)s 

(> + V)(K+S)    +(5S)( V2 

k4 - 1 +|1 - A I 

-.2)(1+v) 

(85) 
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Stiffener eccentricity effects  introduce a coupling between extension 

and bending,  as represented by the  terms containing    z      and    z      in 

equations   (80),    However,  since  the orthotropic,   two-element model 

does not contain a corresponding set of coupling terms,  stiffener 

eccentricity effects are  included by modifying the bending stiffnesses 

D  ,  D   ,     and    D as  follows: 
x      y xy 

Et" 
D  lit. 

x      f      ..  

x y      12t(l  -  v ) 
1 + 

E  I 
s  s 
dD #-T^) 1 +  (  1  -  v )S 

Et" 
D  lit. 

y    f    = 
1  '   Vy       12t(l  -   v2) 

1 + 
E  I 
r r 
2D 

-  C 
Rt2E(l) {lA 
1+  (1-   v2)i      ^   R/ 

D    lltf xy       f 
Et" 

12t(l  -  v ) 

./El E  1   \ 
1 / s  s r r \ 

"  2   ^Vy    dD x    JID  / 

v v ,    /G J        G J   \ 
1        2        2      2   \   dD iD / 

;st2E(T)      Kj v 
CSt      ____„ 

1 +  (1  -   v2)S 

v 

2 
CRt2E 

1 +  (1   -  v")R 

:(1  -   v2)R St2E\ t j 

2 + 2(1 + v) (R + S)  + 2R S(l  -  v ) (I +v) \   R       R / 

(86) 

where    C     is a nondimensior.al eccentricity constant, 
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APPENDIX V 

METHOD OF SOLUTION FOR THE ELASTIC, ECCENTRICALLY 
STIFFENED. CIRCULAR CYLINDRICAL SHELL  1 j — ,  

Substitution of expressions for the displacements [equations (14), (15), 

(40)t and (41)] and stresses [equations (17), (18), and (19)] into the 

Reissner functional given by equation (43) , and subsequent integration 

of the result, yields 

U" 3 u =  -  =_4 — F      -A    F      -A U      2t E/2rtRL\ E    00      Vo2 

- 4A22(F22 + H22j   -  3A31(F31 + 3H3J  +4(f) 

-A13(3F13 + H13)-8A20H20-fj(f)2 

ii(Fii + Hii) 

+ A 
13 %-*h + h + m   *   A

2„fir-^.^^ 
S S 

X 
s'        s' 
y      xy [ 31    sl       s 

X 
s' s' y xy 

FA2 A2 

U-9|
A024    4 A20 + 32    — + ^   7^ 

1    x y 

I    + T]2(t/R)2 \(K\      4/2 2\ 
1        «I1"   Vy)     Ml'    '\^ + 32i20J 

(1)     (^ ,2 
'02 + 32r„|    + ^)+ ^41) j *% 

2(1 - v v )       /h    v9 ,    I 
(87) 

where 

s'  = 
s1   s" x   x 

u   s'   +   L   s ' 
x y        y x 

(88) 
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The nldturf&ce stiffnest parameters s1, s', and s'  are, in turn, 
x  y     xy 

related to their stiffened circular cylindrical shell counterparts in 

equations (84) and (85) of Appendix IV, and are repeated here in combined 

form as 

. ,\ t )ll -t- S + R + S R(l - v2)| 

1 + (1 - v2)R 

s' " I t /ll + S ^ R -t- S R(l - v2)| 

1 + (1 - v2)S 
(89) 

A t /ll + S + R ->- S R(l - v^l 
,f  2fl + (1+v) (R+S) + R S(l-V2) (l+v)| + [ij-n^ +  (1-v2) (jij + K.R) 

y x y   x 

The bending stiffness parameters have been presented in equation (39) 

of the text and are listed here again as 

ff^Xt)' l-vvv/fcl3r        EX 

i + (i. v2)? (T)N 

V V 

W-i-^ii) 

E  I   i r r 
4R(1    -    V   V   ) 

m 2 - 
1 +  (1  -   v )R 

i - 
v        v        1  /G J x . _z + M s s 

2        2 + 2 \  dD 

G J \ 
— 

,    ,      E  I E I   vl / 
1 v   -i-ä+ v   -^n    +2v 
2 y y    dD x    JJD   /1 y \ 

+ 2v      1 + 
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^Irrf^iH-^KH 
^l77f77r.(t)A)l-2( 

V 

i 

v 

2 
\[       C(l-_v2)ii(l) (i + ^l 
' I 2 + 2(1 + v) (R + S) + 2R S(l - v2) (1 + v) * R   R'j 

(90) 

The quantities F.. and H,., defined in Appendix III, can be used here 

if h and T] are replaced by t and T| , respectively. 

The equations resulting from the vanishing of the first variation of equa- 

tion (87) with respect to the free coefficients of the assumed stress and 

displacement functions (equations 13-19) are reduced to four equations 

in the four unknowns £..., i-n»   ^02' and ^^ For Prescribed values 

A, p.,  T], and the stiffened shell parameters, a relationship between 

— and -=■ is obtained and plotted in Figure 5 for eccentrically 
Et      t 
stiffened, circular cylindrical shells. 
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